
CS 188: Intro to AI Lecture Notes

Week 1: Lecture 1 Introduction (1/20)
What is artificial intelligence?
Short History

- 1940s: McCUlloch & Pitts: Boolean circuit model of brain
- 1950-1970: Excitement: Early AI: chess, checkers, “complete algorithm for logical

reasoning”
- 1970-1990: Knowledge based approaches: early development of knowledge-based

systems,
- 1990 - 2012: Statistical approaches, probability uncertainty
- 2012 - : big data, big compute, deep learning, AI used in many industries

AI as Designing Rational Agents
- An agent is an entity that perceives and acts
- A rational agent selects actions that maximize its expected utility
- Characteristics of sensors, actuators

Week 1: Lecture 2 Agents and Environments (1/20)
What’s bad about better AI?

- AI is incredibly good at achieving something other than what we really want
- AI, economics, stat all assume utility to be fixed, known and exogenously specified
- Machines are beneficial to the extent that their actions can be expected to achieve our

objectives
A new model for AI

1. The machines only obj is to max the realization of human preferences
2. The robot is initially uncertain about what those preferences are
3. Human behavior provides evidence about human preferences

Agents and environments
- Agent percieves its environment through sensors and acts upon it through actuators (or

effectors)

Agent Functions
- Maps percept histories to actions:
- F: P* -> A

Agent programs
- L runs on some machine M to implement f
- F = Agent (l, M)
- Limited

Vacuum example
- Performance measure evaluates the environment sequence

- One point per square cleaned up
- NO rewards an agent who dumps dirt and cleans it up

- One point per clena square per time step
- Rational agent choose action to maximize the expected value

Rationality
- Are rational agents omniscient

- No they are limited by the available percepts
- Are rational agents clairvoyant?

- No they may lack knowledge of the environment dynamics
- Do rational agents explore and learn?

- Yes in unknown environments, these are essential
- Do rational agents make mistakes?

- No but their actions may be unsuccessful
Week 2: Lecture 3 Agents and Environments (1/25)
PEAS: Automated taxi

- Performance measure
- Environment
- Actuators
- Sensors

Environment types
- Fully or partially observable
- Single-agent or multiagent
- Deterministic or stochastic
- Static or dynamic
- Discrete or continuous
- Known physics?
- Known perf measure

Agent Design
- Partially observable -> requires memory
- Stochastic -> agent may have to prepare for contingencies
- Multi-agent -> agent may need to behave randomly

- Static -> agent has time to compute a rational decision

Can we extend reflex agent to behave well,
- Pacman is not fully observable power pellets

Week 2: Lecture 4 Uninformed Search (1/25)
Search Problems

- Consists of
- State space S
- Initial state s_0
- Actions A9s) in each state
- Transition model Result(s, a)
- Goal test G(s)
- Action cost c(s, a, s’)

- Solution is an action sequence tha reaches a goal state
- Optimal solution has least cost among all solutions

State Space Sizes
- Agent positions: 120, Food count: 30, ghost positions: 12

State Space Graphs
- State space graph, each state occurs only once
- Can rarely build this full graph in memory

Search Trees
- Can be infinitely large, node for each path

General Tree Search
-

Week 2: Lecture 5 Informed Search (1/27)
Uniformed Algorithms

- Start out radially from the start
Informed ALgorithms

- Are guided toward the goal
A*

- Expand a node n most likely to be on the optimal path
- Expand a node n st the cost of the best solution through n is optimal
- Expand a node n with the lowest value of g(n) + h*(n)

- g(n) is the cost from root to n
- h*(n) is the optimal cost from n to the closest goal

Example: pathing in Pacman
- h(n) = Manhattan distance = |delta x| + |delta y|

Bad solutions
- Actual bad solution cost < estimated good solution cost

Finding good, cheap admissible heuristics is the key to success
Optimality of A* Tree Search

Proof, imagine B is on the frontier
- f(n) is less than or equal to f(A)
- f(A) is less than f(B)
- N is expanded

Uniform-cost expands equally in all directions, A* expands toward goal

Comparison

Creating Admissible Heuristics
- Often admissible heuristics are solutions to relaxed problems, where new actions are

available ,
- Like going through walls in pacman

8 Puzzle
- States:

- discrete tile locations
- How many States:

- 9!
- What are the actions?

- New tile for blank
- What are the step costs?

- 1
- Heuristic:

- Number of tiles misplaced
- Admissible since needs to be moved to correct location

Combining Heuristics
- Dominance: h_1 > h_2
- Larger is better as long as both are admissible
- Zero heuristic is pretty bad
- Exact heuristic is pretty good but too expensive
- If two heuristics, neither dominates the other,

- New heuristic: h(n) = max(h1(n), h2(n))
Knights

- If end square dif color from start square need odd
- H1 = manhattan distance /3
- H2 = euclidian distance / sqrt(5)

Week 3: Lecture 6 Local Search (2/1)
Hill Climbing

- Start wherever

- Move to the best neighboring state

- If no neighbors better, quit

- In order to find the global maximum, have random restarts
-

N Queens problem,
- heuristic value function: number of conflicts

Hill climbing on the 8 queens problem
- Algoirhtms with knobs to twiddle are irritating

Simulated annealing algorithm
- Have a temperature, if bad temperature, make it more variable

Week 3: Lecture 7 Adversarial Searches, Games: minimax (2/3)
A Brief History

- Checkers
- 1950: First computer player
- 1994: First computer world champion: Chinook defeats Tinsley
- 2007: Checker’s solved! Endgame database of 39 trillion states

- Chess
- 1945-60: Zeus, Wiener, Shannon, Turning
- 1997: Deep Blue defeats human champion Garry Kasparov
- Expert level, better than humans

- Go
- 1968: Zobrist’s program plays legal Go
- 2017: AlphaGo defeats human world champions
- Expert level, better than humans

Types of Games
- Task environment with >1 agent
- Turn-taking or simultaneous, randomization, deterministic or stochastic
- Calculate a contingent plan recommending a move for every possible eventually

Game formulation
- Initial state: s0
- Players: Players indicates whose move it is
- Actions: Actions for player on move
- Transition model: Results(s, a)
- Terminal Test: Terminal Test
- Terminal Values Utility how good is the board for each player

Value of a State

- Value of a state is the best achievable outcome from that state
Minimax algorithm

- Assume all future moves will be optimal
- Rational against a rational player

-
- Exhaustive DFS
- Time: O(b^m)
- Space: O(bm)

pruning of children of a minimizer node m is possible (for some assignment to the
terminal nodes), when both of the following conditions are met: (i) the value of another
child of m has already been determined, (ii) somewhere on the path from m to the root

node, there is a maximizer nodeM for which an alternative option has already been
explored. The pruning will then happen if any such alternative option for the maximizer

had a higher value than the value of the "another child" of m for which the value was
already determined.
Week 3: Lecture 8 Adversarial Searches II (2/5)
Resource Limits

- Bounded Lookahead (Shannon, 1950)
- Search to preset depth limit
- Need to have evaluation function at non leaf node

- Multiple player minimax
- Terminals with utility tuples, node value whoever can choose

Games with uncertain outcomes
- Single player: Tetris, investing
- Multiple players: monopoly

-
- Minimax decision invariant on monotonic transformations on values
- Invariant with respect to positive affine transformations

Monte Carlo Tree Search
- Developed for GO,
- Evaluation by rollouts

- Play multiple games to termination from a state s and count wins and losses
- Selective search

- Explore parts o the tree that will help improve the decision at the root
- Rollouts

- For each rollout, repeat until terminal, fraction of wins correlates with true value
of the position

- Do N rollouts from each child and pick the move that gives the best outcome by
this metric

- Allocate rollouts to more promising nodes

- ALlocate rollouts to more uncertain nodes

- UCT uses UCB and choose branches
- Value of a node U(n)/N(n) is a weighted sum of child values
- Rolllouts will typically be used on best children
- Games require decisions when optimality is impossible

- Bounded depth search and approx evaluation functions
Hw: pruning

Week 4: Lecture 9 Logic 1: Introduction to Logic (2/8)
Agents that know things

- Knowledge of the effects of actions (“transitions model”)
- Knowledge of how the world affects sensors (“sensor

model”)
- Knowledge of the current state of the world
- A single inference algorithm can answer any answerable

question
Logic

- Syntax: what sentences are allowed?
- Semantics

- What are the possible worlds, which sentences are true in which worlds
Relational databases

- Syntax: ground relational sentences
- Possible worlds: objects and relations

Propositional logic syntax
- Make sentences with conjunctions or logic
-

Week 4: Lecture 10 Logic 2: Introduction to Logic (2/10)
Partially Observable pacman

- Can see walls at different locations
- Doesn’t know where he is on the map

Pacman’s knowledge base: Sensor model
- State facts about how Pacman’s percepts arise
- Percept variable at t <-> some conditioni on world at t
- If there is a wall to the west at tiem t
- Blocked all around has wall

Pacman’s knowledge base: Transition model
- We care about location variables
- Make logic sentences, and send it to a sat solver

Reasoning tasks
- Localization with a map and local sensing

- Given an initial KB, plus sequence of percepts and actions, where am I?
- Mapping with a location sensor

- Given initial KB, plus sequence of percepts and actions, what is the map?
- Simultaneous localization and mapping

- Where am I and what is the map?
- Planning

- What action sequence is guaranteed to reach the goal?
Summary

- One possible agent architecture: knowledge + inference
- Logics provide a formal way to encode knowledge

- syntax , set of possible worlds, truth condition
- Initial state, sensor model and transition model
- Logical inference computes entailment relations among sentences, enabling a

wide range of task
Inference in Propositional logic

1. Model checking
a. For every possible world, if alpha is true, make sure that beta is true too

2. Theorem proving
a. Search for a sequence of proof steps leading from alpha to beta

Forward Chaining
- Applies modus ponens to generate nwe facts, applying rule until nothing more acan be

added
- Given X1 and X2 … Xn -> Y and X1, X2, Xn infer Y

Resolution
- Resolution inference rule takes two implication sentences and infers a new implication

sentence
Satisfiability and entailment

- Whether sentence is satisfiable if it is true in at least one word

Week 4: Lecture 11 Logic 3 (2/10)
Conjunctive normal form (CNF)

- Each sentence can be expressed
- Each cause is a disjunction

Efficient SAT Solvers
- DPLL core of modern solvers
- Recursive depth first search over models with some extras

- Early termination: stop if
- All clauses satisfied
- Any clause is falsified

- Pure literals
- If all occurrences of a symbol in as yet unsatisfied caluses have the same

sign
- Unit clauses

- If a clause is left with a single literal, set symbol is satisfy clause
- Smart variables and value ordering,
- Divide and conquer
- Caching unsolvable subcases as extra caluses to avoid redoing them
- SAT solvers in practice

Logical Agents
- Agent that operates in the pacworld
- State estimation means keeping track of what’s true now

- Ask whether actions percepts
- Localization demo

- Percept, action, percept action
- Can find out where you are

Mapping from a known relative location
- Knows where relative to start space
- Mapping

Week 5: Lecture 12 First Order Logic (2/17)

Expressive power
- Can write it out in logic of a problem

Possible Worlds
- Possible world for first order logic

- Non-empty set of objects
- For each k-ary predicate in the language, set of k-tuples of objects
- For each k-ary function in the language, a mapping from k-tuples of objects to

objects
- For each constant symbol, a particular object
- Infinitely many

Syntax and semantics: Atomic sentences
- An atomic sentence is an elementary proposition

- Predicate symbol with terms as arguments
- An equality between terms

Syntax and semantics: Complex sentences
- Sentences with logical connectives
- Sentences with universal or existential quantifiers

- True in world w iff true in all extensions of w where x refers to an object in w
Inference in FOL

- Entailment is defined exactly as for propositional logic
- In FOL, we can go beyond just answering “yes” or “no” given an existentially quantified

query, return a substitution for the variable such that the resulting sentence is entailed

Week 5: Lecture 13 Probability(2/19)
The real world is rife with uncertainty

- Probabilistic assertions summarize effects of ignorance and laziness
Basic Laws of probability

- Probability model assigns a number P(omega) to each world omega
- 0 <= P(omega) <= 1
- Sum P(omega) = 1

Probability of an event is the sum of probabilities over its worlds
Random Variables

- Some aspect of the world about which we may be uncertain
- Formally a deterministic function of omega
- Range of a random variable is the set of possible values
- Probability distribution of a random variable X gives the probability for each value x in

its range
Marginal Distributions

-
- Collapse a dimension by adding

Conditional probability

-
Normalizing a distribution

- To bring or restore to a normal condition
- Procedure:

- Multiply each entry by alpha = 1/(sum of all entries)

Week 6: Lecture 14 Probability (2/22)
Inference by enumeration

- Evidence variables: E = e
- Query variables: Q
- Hidden variables: H

Ghostbusters model
- Uniform prior distribution over ghost location P(G)
- Sensor Model: P(Cxy | G) depends on distance to Gwhat is

Naive Bayes Model
- One discrete query variable
- All other potentially evidence variables
- Evidence vars conditionally independent given the query variable

Conditional Indpendence

Week 6: Lecture 15 Probability (2/24)
Conditional independence in BNs

- Baynes net global semantics
- Chain rule identity

Bayes Nets
- Inference: calculating some useful quantity from a probability model

Variable elimination
Operation 1: Pointwise product

- Pointwise product of factors
Operation 2: Summing out a variable

- Suming out
- Shrinks a factor to a smaller one

Week 6: Lecture 16 Probability (2/26)
Variable Elimination: Move summations inwards as far as possible
Operation 1: Pointwise product

- Pointwise product of factors (similar to database join, not matrix multiply)
- Increases: blows up
- P(A, J) * P(A, M) = P(A, J, M)

Operation 2: SUmming out a variable
- Summing out a variable from a factor
- Shrinks down

- P(A, J) => P(A)
Polytrees

- Directed graph with no undirected cycles
- Linear in the network size if you eliminate the leaves towards the roots

Sampling basics: discrete categorical distributions
- Get a sample over uniform distribution
- Convert outcome into associating with subinverval

Week 7: Lecture 17 Sampling (3/1)
Rejection Sampling

- Application of prior sampling for estimating conditional probabilities
- Count the C outcomes for samples with r, w, and reject all other samples

Likelihood
weighting

- Importance sampling, estimate some quantify based
on p

- Likelihood is a lot better than rejection sampling
- Likelihood weighting is good

- Values of downstream variables are influenced
by upstream evidence

Markov Chain Monte Carlo
- MCMC is a family of randomized algorithms for approx

some quantity of interest over a very large state space
- Markov chain = a sequence of randomly chosen states where each state is chosen

conditioned on the previous state
- Monte Carlo = an algorithm that has some probability of producing an incorrect answer

MCMC = wander around for a bit, average what you see
Gibbs sampling

- States are complete assignments to all variables
- Evidence variables remain fixed, other variables

change
- To generate next state, pick a variable and sample a

value for it conditioned on all the other variables:
- Tend to move towards states of higher

probability, but can go down too
- Gibbs sampling is consistent
- Most widely used

Week 7: Lecture 18 Markov Models (3/3)
Reason about a sequence of observations

- Need to introduce time into our models
Markov Models (Markov chain/process)

- Value of X at a given time is called the state (usually discrete finite)

Conditional independence assumption
Markov models a special case of Bayes net

- Directed acyclic graph, infinitely many variables,
N-gram models

- State: word at position t in text (can build letter n-grams)
- Transition model

- Unigram (zero-order): P(word_t = i)
- Can tell language

- Bigram(first-order): (Pword_t = i | Word_t-1 = j)
- Trigram (second-order): P(Word_t = i | word_t - 1 = j, word_t-2 = k)

- Sounds somewhat more like english
- Applications: author identification, spam

Example: web browsing
- State: URl visited at step t
- Transition model

- With probability p, choose an outgoing link at random
- Application: google page rank

Forward algorithm: recursive network

-

Limiting distribution is called the stationary distribution Pinfinity
Hidden Markov Models
Hidden Markov Models (HMMs)

- True state is not observed directly
- Underlying Markov chain over states X
- Observe evidence E at each time step
- X_t is a single discrete variable; E_t may be continuous and may consist of several

variables
- Evidence is only depending variable

-

Evidence variables are not independent from each other
- Speech recognition HMM,

- Observations are acoustic signals
- States Are specific positions in specific words

Inference tasks
- FIltering: P(X_t | e1:t)

- Belief state -- input to the decision process of a rational agent
- Prediction: P(Xt+k | e_1:t) for k > 0

- Evaluation of possible aaction sequences, filtering without the evidence
- Smoothing: P(X_k

- Better estimate of past states,essentioal for leaning
- Most likely explanation: argmax

- Speech recognition , deocidng with a noisy channel

Week 7: Lecture 19 Markov Models (3/5)
Filtering algorithm
Aim: devise a recursive filtering algorithm of form P(e|X)

- P(Xt+1 | e1: t+1) = g(e_{t+1} , P(X_t | e_{1:t})
Transition matrix T,
observation matrix Ot
Filtering algorithm
becomes
F_1:t+1 = alpha O_t+1 T^t
f!:t
Predict -> update ->
Normalize -> predict…
Most LIkely Explanation

-
Week 8: Lecture 20 Dynamic Bayes Nets and Particle Filters (3/8)
Dynamic Bayes Nets (DBNs)

- Track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net

structure at each time
- Variables at time t can have parents

at time t-1
DBNs and HMMs

- Every HMM is a single var DBN
Exact Inference in DBNs

- Varirable elimination: “unroll”
network for T time steps, elmiinate
vars to find P(X | e)

- Online: eliminate all vars from previous time step
- Largest factor contains all vars for current time

Particle Filtering
- Particle FIltering
- Belief state by a set of samples
- Samples are particles, time per step is linear in the number of samples
- Number needed may be large
1. Prediction step

- Particle j in state samples a new state from transition model𝑥
𝑡

- 𝑥
𝑡 + 1

(𝑗)𝑃(𝑋
𝑡 + 1

| 𝑥
𝑡
(𝑗))

2. Update Step
- After observing 𝑒

𝑡 + 1

- 𝑤(𝑗) = 𝑃(𝑒
𝑡+1

|𝑥
𝑡+1

(𝑗))

3. Resample
a. N times, we choose from weighted sample distribution with replacement,

Simultaneous Localization and Mapping (SLAM)

Week 8: Lecture 21 Rational Decisions (3/12)
Principle of Maximum Expected utility

- Rational agent should choose the action that maximizes its expected utility, given its
knowledge

Wrost case minimax reasoning
- Better states to have higher evaluations, monotonic transformation
- Average case, we need magnitudes to be meaningful

Utilities
- Fuctions from outcomes (states of the world) to real numbers that describe an agent’s

preferences
Uncertain Outcomes

- Agent has preferences among prizes A, B, Lotteries: situations with uncertain prizes
Notation

- Preference: A > B
- Indifference: A ~ B

Rationality
Rational Preferences

- Axiom of Transitivity: (𝐴 > 𝐵) ∧ (𝐵 > 𝐶) → (𝐴 > 𝐶)

Maximinzing Expected Utility
- Given any preferences satisfying constraints, there exists real valued function U st

Optimal policy invariant under positive affine transformation 𝑈' = 𝑎𝑈 + 𝑏, 𝑎 > 0
Human Utilities

- Compare prize A to standard lottery between𝐿
𝑝

- Best possible prize and worst possible catastrophe
Money does not behave as a utility function, can talk about utility of having money
Post decision Disappointment: Optimizer’s Curse

- Don’t have access to exact utilities, only estimates
- Choose best one V* with high probability actual value is considerably less than V*

Week 9: Lecture 22 Decisions Networks and VPI (3/15)
Decision Networks

- Includes info about
- Current state, possible actions, state that will result, utility of state

-

Decision Algorithm
- Fix evidence “e”
- For each possible action a

- Fix action node to a
- Compute posterior P(W | e, a) for parents

of W or U
- Compute expected utility

𝑤
∑ 𝑃(𝑤|𝑒, 𝑎) 𝑈(𝑎, 𝑤)

- Return action with highest expected utility
- WIth action node as parents, it is sometimes

called Q-value
Value of Information

Value of information = expected improvement in decision quality from observing value of a
variable
Key Point: decision network contains everything needed to compute it

VPI properties
- VPI is non-negative!
- Not usually additive: 𝑉𝑃𝐼(𝐸

𝑖
, 𝐸

𝑗
 | 𝑒) ≠ 𝑉𝑃𝐼(𝐸

𝑖
|𝑒) + 𝑉𝑃𝐼(𝐸

𝑗
|𝑒)

- Order independent: 𝑉𝑃𝐼(𝐸
𝑖
, 𝐸

𝑗
 | 𝑒) = 𝑉𝑃𝐼(𝐸

𝑗
, 𝐸

𝑖
 | 𝑒)

Week 9: Lecture 23 Markov Decision Process (3/17)
Decision network = Bayes Net + Actions + utilities
Decisions with unknown preferences

- Machine optimizing the wrong preferences causes problems
If robot lets human decide human will only allow robot to act if utility > 0
Sequential decisions under uncertainty

- Decision problem is one shot -- concerning one action
Markov Decision process (MDP)

- ENvironment history, list of state transitions and actions
- “Markov” generally means given the present state, future, and past are independent
- “Markov” in MDP means actions outcomes depend only on the current state
- MDPs are fully observable but probabilistic search problems
- MDP defined by

- Set of states s in S
- Set of actions a in A
- Transition model T(s, a, s’)
- Reward function R(s, a, s’) for each transition
- Start state
- Terminal state or absorbing state
- Utility function which is additive

Policies
- Policy gives an action for each state S -> Aπ
- We want an optimal policy * S-> Aπ

- Maximizes expected utlity
- Explicit policy defines a reflex agent

Utilities of Sequences
- What preferences should an agent have over reward sequences?
- More or less?

- Stationary Preferences: only one way to define utilities

-
- Additive discounted utility

-
- is the discount factorγ ∈ [0, 1]
- Worth r now, yr next step, y^2r in two steps

- is bounded by𝑟
0
 + γ𝑟

1
+ γ2𝑟

2
+ ... ± 𝑅

𝑚𝑎𝑥
/(1 − γ)

-

Week 9: Lecture 24 MDP II: Value/Policy Iteration (3/19)
MDP

- Utility function is additive discounted rewards
The utility of a policy

- Executing policy from any state generates sequenceπ 𝑠
0

- 𝑠
0`

, π(𝑠
9
), 𝑠

1
, π(𝑠

1
)

- Sequence: 𝑅(𝑠
9
, π(𝑠

0
), 𝑠

1
), 𝑅...

- 𝑃(𝑠
1

| 𝑠
0
, π(𝑠

0
)) * 𝑃(𝑠

2
| 𝑠

1
, π(𝑠

1
)) *

- Value (expected utility of in written asπ 𝑠
0

𝑈π(𝑠
0
)

- Sum over all possible state sequences
- Optimal Quantities

- Optimal policy

- = optimal action from state sπ*(𝑠)

- Gives highest for any𝑈π(𝑠) π
- Value (utility) of a state s:

- U*(s) = U^{pi*} (s)
- Value (utility) of a q state (s, a)

- Q*(s, a) = expected utility of taking action a in state s and thereafter acting
optimally

- U*(s) = max a Q*(s, a)
Bellman equations

- Value/utility of a state is

- Expected reward for the next transition plus the discounted value/utility of the
next state, assuming the agent chooses the optimal state

-
- Bellman equations fo rQ functions

-
Solving MDPs

- Value Iteration
- Politcy iteration

Value iteration
- Value Iteration
- U_0 (s) = 0 and some termination paratemter ϵ
- Repeat until convergence (all updates smaller than ϵ

- Do a bellman update (one ply of expectimax) from each state
- Compute next utility function

Contraction
- Operator F is a contraction by a factor c, it brings any pair of objects closer to each

other (according to some metric d(,))
- For any x, y d(E_x, F_y) \leq c, d(x, y) where c < 1
- Value iteration is just 𝑈

𝑘+1
 ← 𝐵𝑈

𝑘

- The Bellman update B is a contraction by γ
- Metric is max norm: || 𝑉 − 𝑊|| = 𝑚𝑎𝑥

𝑠
|𝑉(𝑠) − 𝑊(𝑠)|

Week 11: Lecture 25 MDP III: Value/Policy Iteration 2 (3/29)
How fast does Value iteration converge

- Distance between and *𝑈
𝑘`

𝑈

-
How do we know answer is (nearly) right

-

How should agent act given U(s)
- Max expected utility
- Policy extraction, finds policy implied by U

Quality of a policy measured by policy loss ||𝑈π − 𝑈*||
Policy loss is bounded

Problems with Value iteration
- Value iteration repeats the Bellman updates

- Problem 1: slow: per iteration𝑂(𝑆2𝐴)
- Problem 2: max at each state rarely changes
- Problem 3: policy often converges long before the values

Policy Iteration
- Basic idea: Make the implied policy in U explicit, compute long-term implications for

value
- Repeat until no change in policy

- Policy evaluation: calculate value for current policy𝑈π𝑘 π
𝑘

- Policy improvements: extract new implied policy fromπ
𝑘+1

𝑈π𝑘

- Still optimal
- Can converge much faster under some conditions

-
Policy Evaluation

- Idea 1: Turn recursive Bellman equations into updates

- 𝑈
0

π(𝑠) = 0

- Efficiency 𝑂(𝑆2)

Comparison
- Both value iteration and policy iteration compute the same thing (all optimal values)
- Value iteration

- Every iteration updates both the values and the policy
- We don’t track the policy, but taking hte max over actiosn implicitly recomputes

- Policy iteration
- Passes to update utilities with fixed policy, only consider one action
- After policy evaluation, new policy is chosen
- New policy will be better

- Computer optimal values: value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction
- Variaations of Bellman updates
- Use one step lookahead expectimax fragments
- Differ in fixed policy or max over actions

Week 11: Lecture 26 Learning 1: Decision Trees (3/31)
Learning: a process for improving hte performance of an agent through experience

- Supervised learning: classification and regression
- Learning is essential in unknown environments -- when the agent designer lacks

omniscience
- Learning is useful as a system construction method, expose the system to reality rather

than trying to write it down
Key Questions

- What is the agent design that will implement the desired performance?
- Improve the performance of what piece of the agent system and how is that piece

represented?
- What data are available relevant to that piece?
- What knowledge available?

Supervised learning
- To learn an unknown target function f
- Input: training set of labeled examples (xj, yj) where yj= f(xj)
- Output: hypothesis h that is “close” to f, predicts well on unseen examples (“test set”)
- Many possible hypothesis families for h

- Linear models, logistic regression, neural networks, decision trees, examples,
- Classification = learning f with discrete output value
- Regression = learning f with real-valued output value

Consistency vs Simplicity
- Fundamental tradeoff: bias vs. variance
- Usually algorithms prefer consistency by default
- Reduce hypothesis space

- Fewer better features/ attributes
- Regularization

- Smoothing, generalization parameters

Decision Trees
- Popular representations for classification
- Can represent any function of the input

Hypothesis Spaces in general
- Increasing the experessiveness of the hypothesis language

- With nypothesse, all but exponentially small fraction will require bits to express in22𝑛

any representation

Week 11: Lecture 27 Learning 2: Decision Trees (4/2)
Learning a Decision Tree

- Goal:
- Given training data of a list of attributes & label
- Hypothesis family H: decision trees
- Find (approx) smallest decision tree that fits the training data

- Iterative process to choose the next attribute to split on
Information

- Info answers questions, the more clueless I am initially, the more information is
contained in the answer

- Coin probability p heads, entropy
- H(<p, 1-p>) = -plogp - (1 -p) log(1-p)

- Information in an answer when prior is < 𝑝
1
,..., 𝑝

𝑛
>

- Entropy of the prior: 𝐻(< 𝑝
1
,..., 𝑝

𝑛
>) =

𝑖
∑− 𝑝

𝑖
log 𝑝

𝑖

- p positive and n negative examples at the root
- An attribute splits the examples E into subsets each of which needs less info to𝐸

𝑘

complete the classification

- Expected number of bits needed after split is
𝑘
∑(𝑝

𝑘
+ 𝑛

𝑘
)/(𝑝 + 𝑛)𝐵(𝑝

𝑘
/𝑝

𝑛
+ 𝑛

𝑘
))

Information gain
- 1 - (sum expected bits)

-
Important points about learning

- Data: labeled instances
- Training data
- Held out data
- Test data

- Features: attribute-value pairs
- Experienctation cycle

- Learn parameters on training set
- Tune hyperparatmeters on held out set
- Compute accuracy of test set
- Never peek at the test set

- Evaluation:
- Accuracy : fraction of instances predicted correctly

- Overfitting and gernalization
- Want a classifier which does well on test data
- Overfitting: fitting the training data very closely, but not generalizing well
- Underfitting: fits the training set poorly

Week 12: Lecture 28 Learning 3: Linear Regression & Perception (4/4)
Entropy:

- Measure uncertainty in a probability distribution
Supervised Learning

- Classification = learning f with discrete output values
- Regression = learning f with real-valued output value

Linear Regression
- Least error or residual
- Actual - prediction

Loss function
- w* to minimize loss function

- Find the partial of loss with parameters and set to 0 to find optimal
Threshold perceptron as linear classifier

- Single unit that outputs y = 1 when x >= 0 and =0 when w.x < 0
- Multidimensional gieves hyper plane

Weight Updates
Perceptron learning rule

- If y h(x)≠
- False negative

- <0 but y = 1
- Increase weights on positive inputs
- Deceraes weights on negative inputs

- False positive
- W.x > 0 but output should be y = 0
- Decrease weights on positive inputs
- Increase weights on negative inputs

- Perceptron learning rule

-
Perceptron convergence theorem

- Linearly separable iff there is some hyperplane exactly separating ostivie from negative
examples

- Convergence: if training data are sepratebl, perception learning applied regularly
Perceptron happy as loing as it separates the training data

- Sigmoud 𝑔(𝑥) = 1

1 + 𝑒−𝑥

- Logistic regression

Week 12: Lecture 29 Learning 4: Statistical learning & Naive Bayes (4/9)
L2 loss for linear regression
Perceptions hopeless for XOR
Basic Questions

- Which hypothesis space H to choose
- Probability model P(y, x, h)

- How to measure degree of fit
- Data likelihood π

𝑗
𝑃(𝑦

𝑗
|𝑥

𝑗
, ℎ)

- How to rade off degree of fit vs. complexity
- Regularization or prior arg max P(h) pi P(y | xj, h)

Bayesian: computing posterior over H
- Hypothesis space H to choose

- All hypotheses with nonzero a priori probability
- How to measure degree of fit

- Data probability, as for MLE/MAP
- How to trade off degree of fit vs complexity

- Use prior, as for MAP
- How to find a good h

- Bayes predictor
Parameter Estimation
Maximum Likelihood parameter estimation

- Estimating distribution of a random variable
- Evidence x = x_1 , x_n
- Likelihood: probability of the evidence P(x_1 … x_n)
- Log likelihood: L(x;) = log P(θ 𝑥, θ)
- Take derivative to find max loglikelihood

Laplace Smoothing
- Laplace smoothing strength α

-
Probabilistic Classification

- Bayes net model for ham/spam
- Class C of document with prior P(C)
- Bag of words model: word W_i in the document generated independently from a

class-specific distribution P(W|C) over words
- Naive bayes model
- For posterior distribution for class C

-
- Estimate prior over classes, parameter learning for naive bayes nets

Week 13: Lecture 30 Neural Nets (4/12)

Bayesian Learning

- Learning = Bayesian updating of a probability distirbution over H
- Prior P(H) training data
- Predictions use a likelihood-weighted average over the hypotheses

-
- Posterior probability of hypotheses changes

Deep Learning/Neural Network
Loose inspiration: human neurons

Activation functions g

-
Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

-
- If activation positive, +1, negative -1

Best w?
- Max likelihood estimation

-
Multiclass logistic regression

- Weight vector for each class: 𝑤
𝑦

- Score (activation) of a class y: 𝑤
𝑦

* 𝑓(𝑥)

- Prediction w highest score wins: 𝑦 = arg
𝑦

max 𝑤
𝑦

* 𝑓(𝑥)

- Max likelihood with p

-
Optimization

- How to solve equation getting closest
- Hill Climbing

- CSP
- Start from wherever

- Gradient ascent : steepest direction
- Update in uphill direction
- Sleeper the slope, the bigger the step

Batch Gradient Ascent on the Log Likelihood Objective

Stochastic Gradient Ascent on Log Likelihood Objective

Mini Batch Graident Ascent

General form for Deep Learning

Common Activation functions

Deep Neural Networks,
Training is similar to logistic regression

- Run gradient ascent

Week 13: Lecture 31 Neural Networks (4/14)
Neural Network Properties

- Theorem (Universal Function Approximatiors)

- A two layer neural network with a sufficient amount of nodes can approx any
function to desired accuracy

How to compute derivatores for all functions?
- Use chain rule

Automatic Differentiation
- Software only need to program the function g(x, y, w)
- Automatically compute all the derivatives wrt all entries in w

Training a Network

-
- Forward, Backwards, Gradient, Backprop

Back Propagation: 𝑔(𝑤) = 𝑤
1

3𝑤
2
 + 3𝑤

1

- Forward, inference putting in values
- Backprop start from the end

- G =

Summary of Key Ideas
- Optimize probability of label given input
- Continous optimization

- Gradient ascent
- Steepest uphill direction = gradient
- Take step in gradient direction
- Repeat

- Deep neural nets
- Layered computation graph

- Last year
- Convolutional Network

- alexNet input image
- Weights
- Loss
- General computation graph

Neural Network architectures
- ResNet: Residual networks
- Networds with attention
- Transformer networks

Neural Network architecture search
Really Large models

- GPT2, GPT3
- CLIP

Week 14: Lecture 32 Reinforcement Learning (4/19)
Related: Markov Decision Process (MDP)

- Fully observable but probabilistic search problems
Reinforcemnt Learning

- Assumes Markov Decision Process (MDP)
- Set of states 𝑠 ∈ 𝑆
- Set of actions (per state) A
- Model T
- Reward function R(s, a, s’)

Still looking for policy π(𝑠)
New Twist: don’t know T or R

- Don’t know which states are good or what the actions do,
- Must actually try actions and states to find out

Reinforcement
Learning

- Basic
Ideas

- Exploration: have to try unknown actions to get information
- Exploitation: eventually, use what you know
- Sampling: repeat many times to get good estimates
- Generalization: what you learn in one state may apply to others too
- Regret: How efficient doing exploration

Offline (MDPs) vs Online (RL)
- RL doesn’t know what each action will do

Model-Based Learning
Model-Based Idea:

- Learn an approx model based on experiences

- Solve for values as if the larned model were correct
Step 1: Learn empirical MDP model

- Count outcomes s’ for each s, a
- Normalize to give an estimate T(s, a, s’)
- Discover each R(s, a, s’) when we experience

Step 2: Solve the learned MDP
- Use value iteration or another way to solve

Example

- Want to learn transition model and reward model𝑇
^
(𝑠, 𝑎, 𝑠') 𝑅

^
(𝑠, 𝑎, 𝑠')

- Find average of the transition state
Pro:

- Makes efficient use of experiences
Con:

- May not scale to large state spaces
- Learns model one state-action pair at a time
- Cannot solve MDP for large |S|

Analogy: Expected Age
- Collects samples a1, a2,...
- Unknown P(a): “Model Based”

- Compute P(a)
- Then compute expected value

- Unknown P(A): “Model Free”
- Samples aeppear with the right rfrequencies
- Compute expected value directly without probaiility

Passive

Reinforcement Learning
- Simplified task: Policy evaluation
- Input: fixed policy π(𝑠)
- Learn the state values

Learner is “along for hte ride”
- No choice about what actions to take
- Execut ethe policy and learn from experience

Direct Evaluation
- Goal: Compute values for each state under π
- Idea: Average together observed sample values

- Act according to pi
- Every time you visit a state,w rite down what the sum of discounted rewards

turned out to be
- Avg those samples

- Pros:
- Easy to understand, doesn’t require any knowledge of T, R
- Eventually computes the correct avg values, using sample transition

- Cons:
- Waste information about state connections
- Each state must be learned separately
- Takes long time to learn

Why Not use policy evalutation
- Need T and R to do policy evaluation

Sample-Based Policy Evaluation
- Improve by computing averages

-
- Idea: Take samples of outcomes s’ and average

-
Temporal Difference Learning

- Big Idea: Learn from every experience
- Update V(s) each time experience a transition (s, a, s’, r)
- Likely outcomes s’ will contribute updates more often

- Temporal difference learning of values
- Policy still fixed, still doing evalution
- Move values toward value of whatever success occurs: runnign avg

Exponential Moving Average

-
- Recent samples more important, foregets about past
- Decreasing learning rate can give converging averages

TD Value Learning
- Model free wya to do policy evlaution
- Mimicking Bellman updates with running sample averages

- Make action selection model-free too

Week 14: Lecture 33 Reinforcement Learning 2 (4/21)
Passive Reinforcement learning

- Fixed policy that determines its behavor
Model-based learning

- Learn an approx MDP model based on experience
Model-free learning

- Do not learn a specific MDP
TD Value Learning

- Q-value: state s action a first step is given
- Find action to maximize Q value

- Value iteration: successive (depth-limited) values
- Start with V(s) = 0 and calculate depth k+1 for values for all states

- Q values more useful can compute them instead

- Start with Q(s,a) = 0
- Given, Q, calc depth K + 1 q values for all q states

Q - Learning

- Q-lenaring: sample-based Q value iteration
- Learn Q(s, a) values as you go

- Get sample (s, a, s’, r)
- Consider old estimate

- Sample = R(s, a, s’) + maxQγ
- Incorporate new estimate into running avg

Q-Learning
- Full reinforcement learning: optimal policies
- Goal: learn optimal policy, values

Q-Leanring Properties
- Q-learningconverges to optimal policy even if you’re acting suboptimally
- Off-policy learning
- Cavets

- Have to explore enough
- Make the learning rate small enough
- Not decreases it too quickly
- Doesn’t matter how you select actions

Exploration vs Exploitation
- Explore to find new places, explotation always going to same place

How to Explore
1. Simplest: random action

- Small probability act randomlyϵ
- Problems with random actions

- Keep thrashing around once learning is done
- Lower epsilon over tiem

Exploration Functions
- When to explore: random actions: explore a fixed amount
- Explore areas whose badness is not yet established, eventually stop exploring
2. Exploration function: explore badness not established

- Takes a value estimate u and visit count na nd returns optimistic utility
predetermined constant

- f(u, n) = u + k/n,
- Regular Q-Update: Q(s, a) <- R(s, a, s’) + γ

- N(s, a) : number of times q state (s, a) visited)
Regret

- Even if you learn optimal policy, you still make mistakes along the way
- Can look at mistakes made during learning processs
- Regret: measure of total mistake cost: difference between (expected) rewards, youthful

suboptimality, optimal rewards
- Requires optimally learning to be optimal
- Random exploration and exploration functions both end up optimal but ranodm

exploration has higher regret
Approximate Q-Learning
Generalizing Across States

- Basic Q elearning keeps table of all q values
- Cannot possibly learn about every single state

- Too many states to visit
- Too many states to hold q tables in memory

- Want to generalize
- Learn about small number of training states from experience
- Generalize experience to new, similar situations

Feature -Based Representations
- Solution: describe a state using a vector of features (properties)
- Q(s, a) : describe a state using a vector of features (properties)

- Distance to closest ghost, etc
- Linear Value Function

- Can write q function for any state using a few weights
- 𝑉(𝑠) = 𝑤

1
𝑓

1
(𝑠) + 𝑤

2
𝑓

2
(𝑠) + ... + 𝑤

𝑛
𝑓

𝑛
(𝑠)

- 𝑄(𝑠, 𝑎) = 𝑤
1
𝑓

1
(𝑠, 𝑎) + 𝑤

2
𝑓

2
(𝑠, 𝑎)...

- Advantage: experience summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different

Approximate Q-Learning
- Q-Learning with linear Q -functions

-
- Adjust weights of action features
- If somehtin bad happened, blame features
- Online least squares

Q-Learning and Least Squares
Linear Approx: regression

- Can reduce loss
Summary: MDPs and RL

Week 14: Lecture 34 Guest Lecture: Adversarial ML (4/23)
Machine learning not as great in applications
Data -> Training -> Neural Networks -> test input gives Y

1. Poisoning: modify training data to cause test errors
2. Evasion: modify test inputs to cause test errors
3. Model Stealing: study model output to reveal parameters

4. Training Data Extraction: Study model praremeters to reveal training data

Act I: Evasion
Already trained model, find inputs that cause errors
Can Adversarial Perturbation is you flips the bits on
some
Vision problems
How do these attacks work?

- Classifys the dog by and the strength of the
model is the peak

- Little change in pixel space makes huge loss
How to defend it against attacks

1. Train it on adversarial training
a. There is still a region which is

misscalssified
Act II: Poisoning
Modify training data to cause test errors,
Have ver small data that can mess up the model very much

Act III: Training Data Extraction
Study model parameteres to reveal training data
Can reveal data about the training
Model can try to guess the answer, loss might be better than if you guess
How do we prevent this?

- Differential using two different models and see if adversarial can find
something about the model

Act IV: Steal the Model
Given i/o learn the parameters
Find points around the boundaries to reverse find the model
Useful to set up future attacks

Week 15: Lecture 35 Guest Lecture: Fairness and ML: Hardt (4/26)
Live in a world of inequality, oppression, discrimination but ML can perpetuate existing
pattersn of injustice
Ruha Benjamin: employment of new technologies reflect and produce existing inequalities
Unjustified discrimination in consequential decision making settings
Discrimination in US

1. Disparate treatment
- Purposeful consideration of gorup membership
- Goal: Precedual faireness

2. Disparate impact
a. Avoidable or unjustified harm
b. Goal: Distributive justice, minimize differences in outcomes

Failure of fairness through unawareness
- Removing or not including sensitive data
- Amazon was predicting number of purchases correlates with affluence

We don’t consider that in our data is never a valid argument
Part 1: Fairness criteria in classification
Urgency, scale, reach, and impact of algorithmic decisions

1. Equalizing acceptance rate
a. Equal positive reate: for any two groups, a, b, require
b. 𝑃[𝐷 = 1 | 𝐴 = 𝑎] = 𝑃[𝐷 = 1 | 𝐵 = 𝑏]
c. Does not rule out unfair practices

i. Make good decision in one group, equaize positive rate, less data or poor
data in one group

d. Adversarial learning to train representation of data independent of group
memeberhsip

Error rate parity vs calidbration
- Can’t have them all, mutually exclusive

Essence of COMPAS debate
- Risk score used by many jurisdictions to assess “risk of recidivism”. Judges may detain

defendant in part based on this score

Week 15: Lecture 36 Guest Lecture: CLIP Learning Transferable Visual
Models From NL Supervision (4/28)
One model can be adapted to variety of tasks,
recognizes things in a viaul scene learns about images
from free-form text
Vision models led to the deep learning boom
CLIP special

- Instead of using a fixed set of labels, get
supervision from natural language

CLIP: Contrastive Language-Image Pretraining
- Training

- 400 M image-text pairs form the
internet

- Batch size of 32,768
- 32 epochs over the dataset
- Cosine learning rate decay

- Architecture
- Resnet-based or ViT based

Representation Learning
Zero-Shot Transfer
Quantifying unsafety of CLIP models

- Race, gender, restricted to research
Typographic Attacks

Week 15: Lecture 37 The Future of AI (4/30)
Way we train AI is fundamentally flawed
Real world performance far worse than test set
Overinterpret how well our systems are doing
Behavior is fragile
Deep learning and infinitum

- Francois Chaollet(2017) :

- Many more applications are completely out of reach for current deep learning
techniques even given vast amounts of human-annotated data

Probablilstic programming
- Universal languages and algirhtms for prabailistic modeling, learning, and reasoning

Likely Developments in 2020s
- Robots for war, roads, warehourses, mines, fields, home
- Personal digital assistants for all apsects of life
- Commercial language systems
- Global vision system via satellite imagery

General-purpose AI still missing
- Real understanding of language
- Integration of learning with knowledge
- Long range thinking at multiple levels of abstraction
- Cumulative discovery of concepts and theories

Standard model for AI
- Human gives maximze reward function

-
- Fine for artificially defined game like chess
- Hard to define function for other tasks like AI reward function for driving
- King Midas: Cannot specify R correctly
- Becareful what you wish for
- Succeed in getting objective
- Smarter AI -> worse outcome

Social media
- Optimizing clickthrough

- Learning what people want
- Modify people to be more predictable

How we got into this mess
- Humans are intelligent to the extent that our actions can be expected to achieve our

objects
- Mahcines are intelligent to the extent that their actions cna be expected to achieve their

objectives

- Mahcines are beneficial to the extent that their actions can be expected to achieve our
objectives

New model: Provably beneficial AI
1. Robot goal: satisfy human preferences
2. Robot is uncertain about human preferences
3. Human behavior preovides evidence of preferences

-> Assistance game with human and machine players
Smarter AI -> better outcome

Machine has positive incentive to allow itself to be switched off
“Imperfect” human behavior

- Computationally limited
- Emotioinally driven behavior

Many humans
- How to make decisions based on my human preference s
- Commonalities and difference in preferences
- Aggregate individual preferences
- Aggregation over individuals with diff beliefs
- How to have robots make decisions for us

Summary
- Standard model for AI leads to loss of human control over increasingly intelligent AI

systems
- Provably beneficial AI is possible and desirable

- It isn’t “AI safety” or “AI Ethics” its AI

- Problems of misuse and overuse

