
CS 162 Midterm 2 Notes Jeffrey Shen
Choose For

Scheduling FCFS / FIFO CPU Throughput

scheduling decides which threads are given access to resources moment to moment
SBTF Approx . Avg ResponseTime

Goals: 1) d Response Time 2) 9Throughput (operations/sect, b overhead 3) 9 Fairness
I /0 Throughput

Waiting Time: time before it got scheduled Priority Inversion Linux CFS Fairness LCPU Time)
Competition Time: waiting time + running time blocked

Round Robin Fairness (CPU WaitTime)
Priority handles differences in importance,watch starving priority I → Job 3in

Priority Inversion : high priority task blocked waiting Priory 2→ Job2 $?% EDF Meeting Deadlines
on low priority thread Priority 3→ Job 1 Priority Favor important

Policies

1) First Come
,
First Served LFCFS / FIFO) 2) Round Robin LRB)

Idea: Each Process gets small unit of CPUtime (quantum)Idea: One program scheduled until done
Pro : with n process, q time quanta, Max waiting time Cn-DgPro : Least overhead , simple

Con : convoy effect (short processes stuck
behind large ones) Con : Lots of cortex switching , high completion time

3) Shortest Job First (STF) ,Shortest Remaining Time First (SRTF) 4) Lottery Scheduling
Idea: Run job with least amount of computation to do Idea: Give job some # lottery tickets , randomly choose ticket
Pro : Optimal ! ! Pros: On avg , CPU time proportional to # of tickets
Con: Need to be able to see future

,
know process length cons : could choose long jobs ,low priority , unfair for less jobs

5) Multiple- Level Feedback Scheduling 6) Earliest Deadline First(EDF) Real Time Scheduling
Idea: Multiple queues , adjusts queue as process is run Idea : Tasks w/ deadlines , computation Times

, choose closest deadline

have queues w/ Fixed priority scheduling , time slice Feasible if n tasks
, Computation Time C , deadline D

Pro : Approximates SRTF Pro : for Real Time §
,
(¥) ← I

con : can counter by requiring I10 and staying in highest scheduling

7) Stride Scheduling , Linux Completely Fair Scheduler (Cts)

Idea: Track virtual CPU time per thread
,gets equal share, choose thread w/ least CPU time

- - - - - - - - - - Qi
Basic equal share : Q: __ Target Latency . Nt <

threads Target Latency : period of +me where every
service gets service

Add min granularity to ensure each processWeighted share: Q: = (tÉpwp) Target Latency gets go run ,
mm time slice thread , threads Threads

a

allow different rates of execution
,
d weight PPhysical CPU time

Deadlocks Deadlock : cyclic waiting for resources
,

deadlock ⇒ starvation
,
starvation # deadlock

Requirements for Deadlock Deadlock Prevention Deadlock Avoidance

1) Mutual Exclusion and bounded resources → 1) Provide sufficient resources, Prevent system from entering unsafe state
- one thread at a time use resources VM unlimited

→2) Abort requests , acquire atomically
↳ Use Banker's Algorithm

2) Hold and wait safe space: can prevent by delaying aquisition
- thread holding resource waits to acquire more→ 3) Fail if waiting too long , unsafe space

: can unavoidably lead to
'

3) No preemption
- resource released voluntarily force give up deadlock

,
with certain acquisition

4) circular Wait → 4) Order resources usage in Deadlocked state: exists a deadlock
- set of waiting threads waiting on each other sameorder

Deadlock recovery Deadlock denial

Bankers Algorithm Idea: Deadlock Detection Algo[Banker]
Allocate resources dynamically

- Checkif resource request leads to unsafe state add to unfinished
-Evaluate each request & grant if for each thread unfinished

- state max resource needs in advance
some ordering is deadlock free if (Request [Max -Alloa] c-Avail)

Allow thread to continue if
- Pretend request granted, run deadlock remove from unfinished

available resources -A- requested >_Max detection algo Avail -_ Avail + Allow

Memory Virtual Memory to multiplex memory , protection , controlled overlap

Pages: small fixed size physical memory chunks Page Table: One per process ,has physical page 9 permission (R/W/ Valid)
Memory Management Unit (MMU) : Translation box converts between virtual & physical address ; kernel handles evicting ,invalidating , disk



1) Base & Bound/ Segment Mapping Base Limit valid 2) Inverted PageTable
Idea: set registers w/ base and limit

K bits - based limito v

z
.

Idea: use a hash table to map VPN to PPN

Pro : Simple segment offset entries Pro : Efficient lookup
Con: Internal and External Fragmentation, cheek offsets Limit

Con : complexity of hash chains, poor cache locality
no sparse address space support check valid

physical: base + offset
or interprocess sharing

3) Simple Paying Virtual Address 4) Multilevel Page Table
Idea : Translations in Page

Virtual Pg# Page offset
Idea: Tree of Page Tables w/ fixed size, SaveTable PageTable Ptr

Pro: Able to share memory :
> Page valid physical Address PageTablePtr (CRS)

j V
Point to same physical > paged v.R physical pg # page offset virtual P1 # Virtual P2 # Page offset (lob- lob-12b)
page #, easy to

>

(e)allocate memory PTE
Check Valid / Permissions Pros: allocate just needed PTE, easy memory allocation, sharing

cons : pageTable too big
cheek Virtual Pg#access Cons: One pointer per page, 22 lookups per reference

Internal fragmentation

Page table Entry LPTE) : pointer to next level page table or actual page , permission bits
/

Caching Cache

Data= NE * K
Translation Lookaside Buffer (TLB) : cache for translations
records vast end result, recent VPN to ppn , include processes ,hardware

*;↳{,,ta?nµ,d÷÷÷Ég%°aÉ~¥
"

^
line size L

Temporal Locality : Time locality , recently
accessed closer write Policy /Eviction Policy

Block: minimum quantum of cachingspatial Locality : Space locality , contiguous blocks
Index: lookup candidates in cache

, identify setSources of cache Misses Tag : identify actual copy1) Compulsory : first access to block zipf Write Through : info written to both block and lower WI memory

↳ clustering , working set tracking write Back: info written only to block,write when evictKate
2) Capacity : cache cannot contain all blocks accessed zipf distribution : increasing size of cache has diminishing returns
↳ increase cache size

'

access rank
50

Average Memory Access TimeLAMAT)3) Conflict : multiple mem location mapped to same cache location
↳ increase cache size, increase associativity AMAT= Hit Rate ✗ Hit Time + Miss Rate ✗ Miss Time

4) Coherence : other process updates memory
Types of Caches

,

TLB typically fully associate
1) Direct Mapped Cache: single block per set, index 2)N-way set Associative: N -direct mapped caches 3)Fully Associative: Every block can hold any line

Valid Tag Data Valid Tag Data Valid Tag Data Tag Valid Data
"° Md"

Cache typically physically indexed virtual Page # offset
d b

Can lookup TLB and cache simultaneously Tag / page # index / byte

Demand Paging Demand Paging : only keep active pages in memory , as cache : fully associative, LRU ,
write back

,
/ pg block

If invalid PTE : Freelist : keep set of free pages by ClockAlgorithm
1) MMU traps to OS w/ Page Fault Working Set : group of pages accessed by process recently2) Find & replace page w/ page from disk
3) Reset Page Table & restart instruction Swapping : Some or all of precious process moved to disk to make room

- Can share code segment,setting read-only
Page Replacement Policies
1) FIFO : evict oldest page 5) Second chance

Con: evicts heavily used pages split into Active and Second Chance List
2) RANDOM: choose random page for replacement Pro : few disk accesses

Con: unpredictable Con: increased overhead trapping
3) MIN : replaces page not used for longest time , optimal Approx LRU

:

Con: don't know future
6) Clock Algorithm Replace an old page, partition into old and young

4) LRU: replace page not used for longest time 7) N-th Chance N chances to stay in memoryCon : too much overhead
Allocation of Memory for Processes :

Equal allocation , Proportional allocation , priority allocation
- can set lower and upper bound for memory
Thrashing : busy swapping pages in and out w/ little progress w/o enough pages



CS 162 Midterm 3 Notes Jeffrey Shen

I/O
I/O is how the computer communicates w/ the world CPU Memory

Block devices character Devices Network Devices Memory Bus
- Access blocks of data

,
fs - single chars at a time - diff from others

, pipes,stream general I/o Bus

openD, read1), write) , seekl) get1) , putt) sockets
,
select) (re)

disk drives
,
DVD-ROM

,
raw -1-10 keyboard , mice, USB ethernet

, wireless, bluetooth
peripheral ±, Bus

Graphics

Bus : wires for Comm/connecting n devices
, protocols for data transfer , one at a time iscsi, usB)

PCI Express bus : not parallel , fast serial channels , use as many as needed

Ways for Process to interact w/ controller: Programmed I/o vs. DMA 3 registers for I/O: 1) status 2) command 3) data

1)Port mapped I/O : CPU uses privileged in /out instructions Device Driver: device specific code
in the kernel interacts w/ device hardware2)Memory -mapped I/O : load/stone instructions

,
in physical address space kernel I/o

"

÷s" Top half: implement std cross device
Direct Memory Access CDMA) : specific device to manage devices calls I open1) closets, read4)
Use hardware interrupts for device ID

,
can also poll top Half kernel interface to device driver÷÷÷1) CPU sets up DMA request, 2)give controller access,3)DMA interrupts when

done Device Driver Bottom half: run as interrupt
handler

Device get input, transfer next block ofStorage Devices persist memory platter
track

Hardware output

Hard Disk Drive (HDB) : magnetic disk storage device
^
'

•

. pfk.BE Response T.me/ Latency : time to complete task Is)
block level random access Psequential access to random access A

-

throughput /Bandwidth: rate of tasks performed lopls)
Request Time: queuing + controller + seek + rotational + transfer throughput __ amount read/ time

n n
n n

software queue
• sector rotating transferring

Startup /Overhead: time to initiate operation (s)

in device dnuen hardware positioning head/arm block of bits Little's Law : in a stable state , avg arrival
= avg departcontroller over track

jobs > N = A ✗ L ←
latency

Bank
p

Solid State Drives (SSD): Flash memory storage device
Block Block AT ten 9mm jobs/s , Bw

qtctt Page Page Page Page avg time waiting
can erase fixed # times

,
no hardware move, only transfer Cen Cen Cen Cen Cen Cen Cen Cen avg arrival rate

Operations: 1) read page 2) erase block 3) program page
cell cell cell cell cell cell cell cell Throughput approaches hmm, bottleneck rate

Memory less service Distribution : req arrival +me independent
Flash Translation Layer (FTL) : Translate logical blocks to Flash layer using p p : utilization carnal rate/ n)TQ =

1- p
• Ts

Ts: mean time to service customer

indirection and copy
- on-write to reduce write amplification & avoid wear out service rate µ= Yrsa

File Systems transforms block interface of disks into Files
,
Directories Logical Block Addressing LLBA): sector has integer

Disk scheduling address controller translates addy ⇒ phys pos
- in-memory inode for system-wide open file table1) FIFO : fair in requests,

d seek time
- most files small

,
most bytes in large files2) Shorest Seek Time First (SSTF) : pick closest req , starvation

3) Elevator Algorithm: closest req in direction of travel
Name using
Resolution

file number offset
data

4) Circular scan (C-SCAN) : one direction, skips req going back
file path > "inode

"
>
block

open
Filesystem Designs

Inode Inode

1) File Allocation Table(FAT): simple , widely used •

FAT Risk Blocks 2)Fast Filesystem : multi-level tree structure array ;
a

Metadata
,

31 File 31 . Block 0 - File Number index into set of inode arr
- direct 7

>

+4 MB
File as collection of disk blocks

<
Files

,
Block I

- inode corresponds to file w/ metadata
"
"

^ >

"

+""B

FAT is linked list one to one with blocks i : > ? :

File number root of block list for file a file a. •i.aaz

- Use bitmap allocation for free !
, indirect

>
>

:

>
:

+4TB

! double
Pro : efficient for small/large files

, locality , twine
s g ;

I : ÷

Directory is file w/ file-name : file-number mapping sequential , random access .no external Crag : s

'

Pro : Sequential , no frag ,big con: random
,
bad locally , internal Crag small

" " Con: inefficient for any , contiguous, reserve 10% space
°

>
:

3) Windows New Technology File System (NTFS) > memda.name dam
Hard link : mapping from name to file number in dir struct

MFT

- Variable size extents w/ I KB size entry large aw
> metadata name dam link never breaks

,
tinkle)

-Master File Table: attn : value pairs , tiny aw > dam
Soft (Symbolic) link : dir entry mapping name to another name

- big files : pointers to other MFT entries Is ant. > ñaia link could break
, symlinlgl)

-can use B-Trees to store name : file-num mapping traversal- Supports journaling is cont . →
' dam

Memory Mapped Files : map file into address space, mmapl)
Buffer cache: Memory to cache disk blocks/nametranslations

4) Ext2/3 Disk Layout implemented in OS software, w/ LRU replacement policy
Disk divided into black groups , journaling + FFS - Read- Ahead Prefetehmg : fetch sequential blocks early

- Delayed writes: wntebaok ,write when full and periodically



Redundant Arrays Of Inexpensive Disks (RAID): Reliable Disk StorageReliability recovery mechanisms for failures
RAID 1 : Disk Mirroring /Shadowing : disk fully duplicated

Availability : probability of system to process neg indep of failures RAID 5-1 : High I/O Rate Panty : Data stripped across multiple disks

Durability : fault tolerance, ability to recover data RAID 6 : allow 2 disks in replication stripe to fail

careful Ordering and Recover : step builds structureReliability : ability of system to perform required tune
, recover scans looking for incomplete actionsTransactions : atomic sequence rlw, consistent state→ consistent state

versioning and copy- on-write: version files- if any fail , roll back otherwise commit
, creating new structure by linking back to unchangedJournaling : log transactions in journal , after logging , apply tail y f head

Log structured filesystem (LSFS) : Log is the storage , writes everything sequentially done pending ¥ ☐I ÉE

Distributed Systems world becoming large distributed system w/ microprocessors in everything
scalability : add resources to system to support more work ☒¥¥. > server .☒⇐¥ ¥⇒⇒
Transparency : mask complexity behind simple interfaceex) location n

Protocols : agreement on how to communicate
, syntax , semantics App Http

, smtp
"

The Internet Allows apps to function on all networks Transport client/Server : hierarchy peer-to-Peer: No central card
TCP

,
UDP

End- to -End Principle: Implement if can correctly w/o any burden server serves all clients All way communication
Networklower layer only for performance enhancement

Hosts : all layers, access data ,
run applications Datalink Distributed Decision Making

Ethernet
,
BT

Switches: physical /data layer, connects hosts on small network physical copper,⇐.sn
General's Paradox : impossible to achievesimultaneous

Routers : physical/data/network layer, routepackets cross-network acknowledgement over unreliable network
Internet Protocol (IP) : network layer

"Best Effort" packet delivery Two-Phase commit : decide if all processes commit
or abort a transaction eventuallyIP Address : 32 bit integer,destination of IP packet set one coordinator

,
vest participants

subnet : network connecting hosts w/ related IP addresses 1) Coordinator asks all processes to voteVOTE
-REQ

Domain Name System (DMS) : hierarchical mechanism for naming , name→IP 2) Participant vote VOTE-COMMIT /VOTE-ABORT
, log

TCP transport connection ,ordered reliable delivery w/ congestion control 3) If all VOTE- COMMIT, GLOBAL-COMMIT,
Transport Layer : EZE Comm between processes , demulliplex port otherwise GLOBAL-ABORT

, log
UDP : connectionless service

,

"best effort" 4)Participant commit or abort on relieve, log
sender Reimer FailureSliding Window : send set of n packets in window {i} I

{ 1,2} 2

Handling Errors Throughput = W
*

packet-size/RTT {"as} 3 § any participant error, coord votes abort

1) Go -Back- n (GBN) : rear only in order, cumulative Ack {23434 < s if all voted commit
,
wait on coord to recover

on timeoutNACK ,resend n packets
{34.535L s

2) Selective Repeat (SR) : selective Aoki, resend only lost packet
0=3 S 3-way handshaking : open client server

TCP Properties conn , congestion control
SYN

, segnum⇒
listen"

prevent delayed packets
' connects

- Seg hums are byte offsets , GBN, don't drop out of seq packets <
sywaun ,sqNum=y Auk=# accept"

allocate
- detect congestion using packet loss, AIMD,

bad packet checksum Round Trip Time (Rt) : time ACK
, Ack=y+, ggufan

1) Increase rate on ACK2) Half rate on packet loss
for packet sender→ reliever→ sender space

Remote Procedure Call (RPG b translation complexity Distributed Filesystems Mount remote files on local fs

Serialization: expressing object as sequence of bytes virtual Filesystem switch (UFS): virtual abstraction offs, Syscalls pass through
VFS

Big/Little Endian : first bit in address most/ least Sig bit VFS object types :

Marshalling: converting values to canonical form
, serializing obj, 1) superblock: specific mounted fs 3) denby obj: directory entry

Binding: converting user-visible name to network endpoint 2) inode obj: specific file 4) file obj : open file

dynamic binding allows flexibly w/ servers Stateless Protocol : all info to service request is included w/ request HTTP
stub generator: compiler that generates stubs idempotent operations: repeating operation is same as executing once
interface def lang→ stub code marshall Networks File System (NFS) common distributed Gk system

call
> Client

send
> packetparameter <→ req message client r

return stub
<

rea.eu
Handler NFS Protocol: RPC file operations on server , stateless , idempotent
✓ ^

result ⇐ reply message Mj Wme- through caching: modified data committed to server's disk before returnunmarshall

Server <
ca"

server <
relieve paint

"

return
> stub

send
> Handler Weak Consistency : client only polls periodically Client Server

Want sequential Ording similar to running Syscalls

✓On single machine veg interface
> VFS interface

Atomicity : occur in entirety or not at all pros: simple, portable ,efficient ✓ ✓

Consistency: one consistent state to another Cons: sometimes inconsistent,doesn't scale UNIX fs NFS client NFS server UNIX fs
^

Isolation : concurrent transact do not interfere
,
serialised "

RPCIXDR Rpc/✗DR
✓

Disk
Disk

>Mj
^

Properties of reliable transactions :ACID

:
3) ons

4) Durability : effect persists despite crashes






