
CS 186 Midterm I Cheatsheet Jeffrey Shen

1 SQL - Basics Queries 2 SQL - Joins and Subqueries
Tables (relations) : makes up relational databases Cross Join :combine every row from left w/ right
has name, rows, columns

name age num-ᵈ°9ˢ InnerJan : use ON clause to specify conditionAce 20 4Boolean Operators:NOT AND OR Ada ☒ 3 LeftOuterJoin : every row from left in outputNULL :special valueany
'

type falsely Ben 7 2 Full OuterJoin : all rows from each in outputGrouping and Aggregation
- summarizecols of data /SUM, AUG,MAX,COUNT) Natural Join : automatically equipin on cols
-

input is name of Col, ignores NULL except COUNTY w/ same name
WHERE occurs before grouping , filter out rows

subqueries:use new table inside thequery
HAVING occurs aftergrouping , filter out groups

SELECT <columns>

FROM < table>

WHERE <predicate>
WITH <table_ name> (<values>) AS

ORDER BY : default sort order ascending (SELECT . . .
)
,

can add DESC
, add columns for breaking ties GROUP BY <columns> <table2- name> (<values>) As

strings : LIKE % :O -1 chars
,
_ any char 's%' HAVING <predicates (SELECT . . .)

ORDER BY licolumns> SELECT
. . .

LIMIT <hums>

3 Disk and Files SQL client

Disk : READ / WRITE RAM Disk Query Parsing
Relational Op

↳ Platters spin at 15000 rpm so arm assembly reads track of sector size Files & Index Mgmt
Solid StateDrives(SSDs) store data, organized into cells, support random fastR Buffer Mgmt

Disk Space MgmtDisk SpaceManagement: lowest layer of DBMS , manages space on disk
Files

, Pages, & Records Filesystem

Database data records organized into relations and can be modified in memory
Page: basic unit of data for disk
Table stored in file

,
records organized into pages in the > ¥3, >%:*. .

Full Pages
File Types Header' Pages w/

Heap File :no particularordering of pages or of records on pages Pager spa:< saggy . .tw space

↳ Linked List Implementation : data page has records , Header

freespace tracker, pointers next prev >

Data
page↳ Page Directory Implementation: linked lists forheader pages ,entries are pointer ↓ ✓

☐am

Page
to data page and free space left

↑inserting records faster,only look through headers
sorted Files : pages are ordered and records sorted by keys
↳ Page Directory Implementation : enforce ordering based on how records sorted

↑ Searching : log N I/O ↓ Insertion : logN -1N IN
Inserting requires cheeky

-Count header page I/O when He type specified key is unique⇒ read all
Record Types data pages
Fixed Length Records LFLR): fixed length fields , same bytes
Variable Length Records (VLR) : both fixed and variable length fields , stores fixed length first

• pointers to end of variable length record id:[page #, record# on page]
Page Formats
FLR pages

/→ Packed : calculate next Pos for insertion
,
deletion requires moving records

↳ Unpacked : store bitmap and track open slots
VLR Pages # records=/(data pagesize-8Nrecord size + 8D
Page footer to maintain slot directory, tracks slot count , free space pointer, entries record

ten
, pointer

↳ unpacked insertion: at free space pointer, new [pointer , length] pair set, periodically packed

4Bt Trees IT

- order of a Bttreed inner nodes at most 2d+1 child pointers
-must have d=x 12d entries, sorted

- only leaf nodes contain records 514 27

Insertion 1.) Find leaf node (to insert,add key and record in order 245141517

2.) If overflow,
a)split L., L2 where he has del entries
b)If Lleafnode, COPY L2 first entry. Ifnot leaf node, MOVE L2 first entry into parent

3)If parent overflow, recurse step 2
Deletion 1) Find appropriate leaf and delete, never delete inner modes

Storing Records
Alt1 By Value: leaf pages contain records (key, val) cannot support multiple indexes
Alt2) By Reference: pointers to cooresponding pages (key, [PageNum,RecordNm]) Amultiple indexes
Alt3) By List of References: listof pointers to corresponding pages (ky, Listof RecordID)A multiple records of same

Clustering
leaf node entry121 121

Unclustered (AH2,3): read in each damitYk" clustered: (Alt1): data pages sorted on 2T124
Date a w

data page they point to Pages same index as Bttree Pages

Counting ICOS Bulk Loading construct By tree from scratch,better cacheuse
1. Read root-to-leaf path 1.Sort data on key index is built on
2. Read data pages 2. Fill leaf pages until all factor of for leaf nodes
3. Write data page ifmodify 3. Pointer from parent to leaf, if overflow
4. Update index page a. keep dentres in L
5 Buffer Management b. MOVE L2 first entry into parentHit Rate = PageAt
Buffer Management responsible for eviction policy PageHit+PageMisses
Metadata Table: FrameID (memory addr), Page ID (page on frame),Dirty Bit (whethermodified),Pin#(pins)
Least Recently Used (LRU): lastused col, lowest value evicted costly,Sequential Scanning ISK buffer pool size
Clock Policy: approx (RU, ref bit, clock hand to track frame, set of bit to

-

eviction: iterate through frames,if ref=1, set 0, when found ref=0,eict,set new page to, more clock
if accessing page in buffer pool, set of bit to 1 who moving clock hand

Most Recently Used(MRH): evict most recently used a sequential scanning ↓ of
6 Sorting -

Full External Sort

Conquer first by sorting records on individual pages, merge pages togethersorted runs
B buffer pages available, can merge together B-l input buffers

R+w passes

+m
Ilos: 2N(1+FlogB-//B77) N = 180pg -> 22mns 8yi -

3rns stopgs -> Inn los

B=8 In 12 pages
7 Hashing
grouping

like values together,want to build several hash tables and concatenate
First partitioning pass hash into B-l partitions, recursively hash until partition has

less than B

Analysis r= #pages to read in for partitioning pass i

depends on partitions,
m = total partitioning passes reg

Ilos: go through passes).ri + vi) +2x w:=# pages to write in partitioning pass i
X = total pages after partition to build

Properties to = N Wi 1 Vi +1 hash table
r: W: X IN

CS 186 Midterm 2 Cheat sheet Jeffrey Shen
8 Joins
1) Simple Nested Loop Join LSNLJ) 2)Page Nested Loop Join (PND) 3) Block Nested Loop Join (BNLJ)
For every record in R, add matches in

S Per page in R, loop through S to match use B-2 buffer to store R, loop through S

I/O:[R]-1 [[R] 7 [s]I/O :[R] -1 /RIG] [r] pages, 1121 records I/0:[R]+[R][s] B-2

4) Index Nested loop Join 5) Naive/Grace Hash Join 6)Sort -Merge Join
create indexing tree , lookup each r ,finds create hash table B -2 pages big forR

sort Rands
, advance until match; mark

in S, lookin S until no match;go nextMR
for GraceHash

, keep hashing until B-2 marked in S

I/O:[R]+ IRI*(cost to look up records in 5) I/O:[R] +[s] I/O :[RT+[s]-1
cost sort Rt
cost sorts

9 Relational Algebra procedural programming language
Projection Tl [SELECT] takes in relation , selects column Intersection n rows in both tabby

selection 0 [WHERE] takes in relation, filters rows Cross Product ✗ one tuple for every possible pair both relations

Union V combine different relations , remove duplicates Join A [JOIN] default natural join
set Diff - returns every row in tablet, not in

table2 Rename P [AS] aliasing
Group By Xan

,group [GROUP BY /HAVING] group by features
10 Query Optimization Find the grey plan to minimize the IDs to execute the query
use iterators forstreaming or blatancy (need entree input Heuristics to find best query plans

selectivity Estimation : approx for percentage of pages
1) Push down projects (a) and selects (o)

making it through operator 2) Only consider left deep plans
,
can be pipelined

✗= a : I / (unique vats in ×) 3) Do not consider cross joins unless only option✗=Y : Ymax(unique vats in X,unique vats in 4) system R (Selinger optimization)
✗ > a:(max (x)-a) Kmax(X) -min G)+ 1)
And 1 AND cord2 : selectivity /candy

*

getaway [•ndzg
1st Pass: full scan [P] or index scan

Alt 1: costto level above leaf -1 num leaves read
Alt 213: Alt I cost + data pages read

1) Join selectivity : IA/* IBI
mailuniquevats A.id, uniquevats for B.

id)
advanceoptimal access plan and an optimal

2) Est
.
no ofjoined tuples by multiplying selectivity of interesting ordered usedin ORDER BY

,
GROUP BY, or join

GHJ
,
PNLJ , BNLJ never have interesting orderjoin w/ joined tuples in Cartesian Product

SNLJ
,
INLJ can preserve sorted orders on left orderly3) Est.no . of pages by dividing by tuples per page Assume we never materialize operators

11 Transactions & Concurrency Concurrent Execution ↑throughput , ↓ latency
1) Inconsistent Reads: user reads part of whatwasupdatedTransaction Schedule: Begin,Read,Write, Commit,Abort
2) lostUpdate: two users try to update at sametime wantto find schedules serializableso sameas in serial

and one gets lost cheek serializability by building dependencygraph:3) Dirty Read: one user reads update not committed - One node per transaction4) Unrepeatable Reads: reads two values for same - edge from Ti to Tj if operation Oi of Ticonflictsrecord be another user updated in between
w Oj ofTj or Oj appears carder than OjTransactions are sequence of multiple actions

- Conflict senalizable iff dependency graph acyclicexecuted as single, logical , atomic unit - View serializability finds schedules conflict serialization
1) Atomicity : commits or aborts, all happen ornone - Blind writes are sequential writes w/ no interleaving2)Consistency: starts and ends consistent reads3) Isolation: isolated from other transactions

4)Durability : if transaction commits
,
effects persist

12 Transactions & Concurrency I
Two Phase locking (2PL) :ensure conflict serializableschedules 1) transactions need shared lock§) before reading

exclusive look(X) before writing 2) cannot acquire new looks after relaxing any locks

Does not prevent cascading abouts wait die: if I higher prionty, 1: FaitsforT; else T: about
↳ Strict IPL:all locks released togetherwhen transactiondone woundwait:if To higher pronty, T, abouts, elseT wails
Lock Managerhash table of resources,granted set, lock type, ↳ Detection: maintain"waits-for"graph:edge of hold lock
wait greue, either granted or put in queue or attempt to acquire lock

Lock Granulanty: want to allow more granularity
Deadlock:cycleofXacts waiting for locksto bereleased

IS,IX lock hasmore granularly
↳ Avoidance: avoid deadlocks

-must hold IS/IX of parent node

13 Recovery
Face Policy: when transaction finishes, force pages to disk

No force: only write back when evicted from buffer pool
No-Steal Policy: pages cannot beevicted until transaction commits

Steal Policy: allow modified pages to be written to disk before transaction suishes
Steal,NoFore
nWrte-Ahead logging (XID, pageID, offset, length, old-data, new-data
-log records written to disk before data page to disk
all log records rotten to disk when transaction commits

Log Sequence Number (CSN) to track order of operations,
prevISN: last operation from sametransaction
flushed(SN: to track last (SN
About: wnte ABORT, undo each operation from bottom-up, wate

Recovery recover from crash CLR (Compensation Log Record)
Transaction Table: XID: transaction ID,status, lastLSN

Dirty Page table (DPT): page ID, reCLSN (first op to dirty table)Undo logging: want to undo if not committed
4types: Start, Commit, Abort, Update

data element, update log record written to disk before dirty page
↓Fortransactionmodifyingask before commit once

scanleg from end to find transaction completed or not, if notcompleted, wate x=0 to disk

Redo logging: no force, no-steal, redo all transactions, bothupdate record commit record
mother before dirty pag

ARIES Recovery Algo: Analysis,Redo,Undo Checkpointing: writes Transaction Table and DPT to log
Analysis: rebuild the Transaction table, DPT redo from smallest reaSN in DPT unless
if not END, add to transaction table,set LastLSN 1) page not in DPT, recISN< LSN, pageLSN(disK) ? LSN
if COMMIT or ABORT, transaction status change undo: start from end of by to start undoing updatesif UPDATE, not in DPT, add to DPT, recLSN set to LSN

if IND, remove from Transaction Table

14 DB Design BONF Decomp: RwFD's F in BCNF for all

values
X>A in Ftif AeX, X superky for R, losslessEntity - Relationship Modeliently objectto set of attabule algorithm:relationship: association among

It entities,many-to-many Input: R,F
use key constraint to denote Itomany relationship,

for more, R=3R3
participation constraint: at least one, thick le if relation wtR not BCNF
weak entity: identified uniquely of primary key of another entity a)Pick volating FDf: X->AstX,Atatrbutes of rAvoid redundances:functional dependencies X->Y X determines Y 6)Compute x+

Superkay: set of columns that determine all columns cl+ R,=x+,Rz=Xv(r-xt)
Candidate key: set of columns that determine all columns d) remove from R

decomposition is lossy it can't reconstruct, Rinto X,Y, XXY=R e) Insert R, and RC into R

XnY -> X (XnY is superkey of x f) Recompute F as FDs over all relations reR

Xn4 ->x(XnY is superlay of 4)
Dependency Preserving if (FxVFy)T=F,BCNF not necessarily lossless

CS186 Final Cheatsheet Jeffrey Shen
15 Parallel Omery Processing query run on multiple machines in parallel
Parallel architectures

shared memory:every CPU
share shared disk: CPU has own memory shared nothing:machines communicate

memory
and disk but share disk through messages

↑

Intraquery parallelism: spread work of one query over multiple machines

↳ Intra-operator: make one operator run as quickly as possible (ex.sorting on multiple
↳ Inter-operator: running operators in parallel (ex. sort S, sort Ron another)
↳ Pipeline Parallelism: records passed to parent as soon as done

- Bushy Tree Parallelism: different branches of operators of the run in parallel

Interquery parallelism: gives each machine different queries for higher throughput quish more queries

sharding: each data page stored only on one machine

Replication: each data page on multiple machines

Partitioning scheme to find which machine a certain record is on

Range Partitioning: each machine stores certain range

↑key lookup, range query
Hash Partitioning: each record hashed sent to machine

↑key lookup, trange query
Round Robin: assign each record to next machine

↓ every machine activated for every query
↑every machine has same data

Network Cost: how much data to send over network to do operation

Parallel sorting/hashing: range partition table, local sorthash on each machine

Passes ·I (partition gross machines) + M+logB-1/N/mB77 (number of passes needed to sort table
S

SMJ Passes: 1)Pass/table to partition across machines) + MH+ logs+ TR/mB77 (passes to sort
R+S) + 2 (fnal

merge sort pass)

Non-pipleline breaker: Symmetric Hash Join: two hash tables, Record probe in a for matches, us

For Hierarchical Aggregation: send data to coordinator nodes forCOUNT, AVG

16 Distributed Transactions

Every table has own local lock table,union waits- for graphs for deadlocks

2 Phase Commit: ensure all nodes reach consensus for a transaction

Participant Coordinator
about * L Prepare aboutprepare or unanimous

*about Vote Yes/No commit or
flush 7 abort

asiord/about--- CommitTAbort----flushcommit
*

& Commit: rerun

Commit or about ACK (committ end about

ACK fish
about flush

TIF

~ F0 cost of performing full scan on a sorted file is same as

scanning a heap file, assuming both are packed

Page directory keeps track of amount of free space on data pages

Beadlocks: wait-die will avoid all Samanos of deadlock
- deadlock avoidance abouts many

-leave aborty transactors in ten table, latest operation by toone

- recISN, laStopram to dirty PI at CSN
Tips
-

- Don't join on wrong col,
-Don't ross join, pay attention to col that join is on

Sorting Hashing
sort records on indivance

page

* W Inter page to sout
-

"

sound
m

Itis
Dare

5

